- They react to both alternating sine-wave residual current and pulsating direct current (type A)
- For protection:
- against accidental contact of live parts ($\left(\mathrm{I}_{\Delta \mathrm{n}} \leq 30 \mathrm{~mA}\right)$
- against accidental contact of exposed conductive parts
- against fire or short-circuit at decrease of insulating capacity of electric equipment
■ Possibility of additional mounting of auxiliary switches PS-0FI11 on the right side of the device
- Possibility interconnection with miniature circuit breakers LSN (LSE) by means of busbars

OFI20, OFI40

- Standard type for common use in building and industrial installations up to $80 \mathrm{~A}, 230 / 400 \mathrm{~V}$ a.c.
- Surge resistance up to $250 \mathrm{~A}(8 / 20 \mu \mathrm{~S})$

0FI41

- Special residual current circuit breakers that reduce undesirable releases
- It is recommended to install them before the equipment causing short-time (up to 10 ms) stray currents - heavy
induction motors, large heating bodies, interference suppressors, surge voltage arresters etc.
- Identification: G
- Surge resistance: $3 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$
- Release delay: 10 ms

OFI42

■ Special residual current circuit breakers that reduce undesirable releases and enable selective switching of residual current circuit breakers

- It is recommended to install them before the equipment causing short-time (up to 40 ms) stray currents - heavy induction motors, large heating bodies, interference suppressors, surge voltage arresters etc.
- Identification: S
- Surge resistance: $5 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$
- Release delay: 40 ms

Residual current circuit breakers 2-pole

$\begin{aligned} & \mathrm{I}_{\mathrm{n}} \\ & {[\mathrm{~A}]} \\ & \hline \end{aligned}$	$\begin{aligned} & I_{\Delta n} \\ & {[A]} \\ & \hline \end{aligned}$	Type		Product code	Weight $[\mathrm{kg}]$	Packing [pcs]
16	0.01	OFI 16/2/010	OFI20	12366	0.24	1
25	0.03	OFI 25/2/030	OFI20	12367	0.24	1
	0.1	OFI 25/2/100	OFI20	13933	0.24	1
	0.3	OFI 25/2/300	OFI20	12368	0.24	1
40	0.03	OFI 40/2/030	OFI20	12369	0.24	1
	0.1	OFI 40/2/100	OFI20	13934	0.24	1
	0.3	OFI 40/2/300	OFI20	12370	0.24	1

Residual current circuit breakers 4-pole

$\begin{aligned} & \mathrm{I}_{\mathrm{n}} \\ & {[\mathrm{~A}]} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\Delta \mathrm{n}} \\ & {[\mathrm{~A}]} \\ & \hline \end{aligned}$	Type		Product code	Weight [kg]	Packing [pcs]
25	0.03	OFI 25/4/030	OFI40	12373	0.46	1
	0.1	OFI 25/4/100	OFI40	12374	0.46	1
	0.3	OFI 25/4/300	OFI40	12375	0.46	1
40	0.03	OFI 40/4/030	OFI40	12376	0.46	1
	0.1	OFI 40/4/100	OFI40	12377	0.46	1
	0.3	OFI 40/4/300	OFI40	12378	0.46	1
	0.5	OFI 40/4/500	OFI40	12379	0.46	1
63	0.03	OFI 63/4/030	OFI40	12380	0.46	1
	0.1	OFI 63/4/100	OFI40	12381	0.46	1
	0.3	OFI 63/4/300	OFI40	12382	0.46	1
	0.5	OFI 63/4/500	OFI40	12383	0.46	1
80	0.3	OFI 80/4/300	OFI40	12384	0.46	1

Residual current circuit breakers 4-pole, surge resistant, selective

$\begin{aligned} & I_{n} \\ & {[A]} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{Ln}} \\ & {[\mathrm{~A}]} \\ & \hline \end{aligned}$	Surge resistant-G		Selective - S		Weight [kg]	Packing [pcs]
		Type	Product code	Type	Product code		
25	0.03	OFI 25/4/030/G 0FI41	13935	-	-	0.46	1
	0.1	OFI 25/4/100/G OFI41	13936	-	-	0.46	1
40	0.03	OFI 40/4/030/G OFI41	12389	-	-	0.46	1
	0.1	OFI 40/4/100/G OFI41	12390	-	-	0.46	1
	0.3	-	-	OFI 40/4/300/S OFI42	12391	0.46	1
63	0.1	OFI 63/4/100/G OFI41	13937	-	-	0.46	1
	0.3	-	-	OFI 63/4/300/S OFI42	12393	0.46	1

OFI accessories

Auxiliary switch	PS-0FI11	page 34
Interconnecting busbar	G-2L-1000/16, G-4L-1000/16	page 93
Connecting adapters	AS/25-GN, AS/25-SN	page 95

RESIDUAL CURRENT CIRCUIT BREAKERS OFI (10 kA)

Specification

Type			OFI20	OFI40	OFI41	OFI42
Standards			EN 61008 , IEC 755	EN 61 008, IEC 755	EN 61 008, IEC 755	EN 61 008, IEC 755
Approval marks			$(E C) \quad D S E$			
Number of poles			2	4	4	4
Type			\approx	A \approx	$\begin{aligned} & \mathrm{A} / \mathrm{G} \\ & \approx \end{aligned}$ /G	$\approx / \mathrm{A} / \mathrm{S}$
Surge resistance ($8 / 20 \mu \mathrm{~s}$)			0.25 kA	0.25 kA	3 kA	5 kA
Release delay			-	-	10 ms	40 ms
Rated operating voltage		$U_{\text {e }}$	230 V a.c.	230/400 V a.c.	230/400 V a.c.	230/400 V a.c.
Min. operating voltage		$U_{\text {min }}$	100 V a.c.	100 V a.c.	100 V a.c.	100 V a.c.
Rated current		I_{n}	16, 25, 40 A	25, 40, 63, 80 A	25,40,63 A	40,63 A
Rated residual current		$\mathrm{I}_{\text {an }}$	0.01; 0.03; 0.1;0.3 A	0.03; 0.1;0.3; 0.5 A	0.03; 0.1 A	0.3 A
Rated frequency		f_{n}	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$	50/60 Hz	$50 / 60 \mathrm{~Hz}$
Mechanical and electrical endurance			> 10000 operating cycles	>10000 operating cycles	> 10000 operating cycles	>10000 operating cycles
Mounting on the rail DIN EN 50022 - width			35 mm	35 mm	35 mm	35 mm
Rated conditional short-circuit current	with backup fuse $\mathrm{I}_{\mathrm{n}} \leq 63 \mathrm{AgG}$	I_{nc}	10 kA	-		
	with backup fuse $\mathrm{I}_{\mathrm{n}} \leq 100 \mathrm{AgG}$	I_{nc}	-	10 kA	10 kA	10 kA
	with backup circuit breaker LSN, LST with I_{n} max. 1:1	I_{nc}	6 kA	10 kA	10 kA	10 kA
	with backup circuit breaker LSE with n_{n} max. 1:1	I_{nc}	6 kA	6 kA	6 kA	6 kA
Connection	conductor		$1 \div 16 \mathrm{~mm}^{2}$	$1 \div 25 \mathrm{~mm}^{2}$	$1 \div 25 \mathrm{~mm}^{2}$	$1 \div 25 \mathrm{~mm}^{2}$
	busbar		$16 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$
	opposite		yes	yes	yes	yes
Operating conditions	ambient temperature		$-25 \div 45^{\circ} \mathrm{C}$			
	seismic immunity ($8 \div 50 \mathrm{~Hz}$)		3 g	3 g	3 g	3 g
	operating position		arbitrary	arbitrary	arbitrary	arbitrary

Dimensions

OFI20

Diagram

OFI20

OFI40, OFI41, OFI42

AUXILIARY SWITCHES

H001

- Accessories to LFI and LFE
- Installation: on the right side
- The auxiliary switch is designed for signalling the position of the main contacts of residual current circuit breakers with overcurrent protection

PS-0FI11

- Accessories to residual current circuit breakers OFI and OFE
- Installation: on the right side
- The auxiliary switch is designed for signalling the position of the main contacts of residual current circuit breakers

Auxiliary switches

Type	Contact sequence ${ }^{1)}$	Product code	Packing $[p c s]$	Weight $[\mathrm{kg}]$
H001	001	13138	1	0.06
PS-0FI11	11	12395	1	0.06

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Specification

Type		H001	PS-0FI11
Approval marks		(EC) E CS CPG	
Contact sequence ${ }^{1)}$		001	11
Rated operating voltage / current	U_{e} / I_{n}	$230 \mathrm{Va.c}. / 5 \mathrm{~A}$	$230 \mathrm{Va.c}. / 6 \mathrm{~A}$
		220 V d.c. $/ 0,5 \mathrm{~A}$	220 V d.c. $/ 1 \mathrm{~A}$
		$24 \mathrm{Vd.c} / 4 \mathrm{~A}$	
Degree of protection		IP20	IP20
Mounting		on right side	on right side

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Dimensions

PS-OFI11

Diagram

Interconnecting systems

INTERCONNECTING BUSBARS AND END CAPS

Interconnecting busbars

- For interconnection of 1 to 4 -pole circuit breakers, tumbler power switches, residual current circuit breakers, lightning current arresters and surge voltage arresters
- For interconnection of a series of single-phase or three-phase circuit breakers and tumbler power switches, on which an auxiliary switch is mounted
- Busbars $\mathrm{G}-\ldots$ with forks into the head part of the device Busbars S-... with pins into the clip part of the device

End cap EK-C-3:

- To cover end of busbar G-3L-1000/10C

Interconnecting busbars

Phase	Cross - section [mm^{2}]	Max. current at power supply of [A/phase]		$\begin{aligned} & \text { Length } \\ & {[\mathrm{mm}]} \end{aligned}$	Type	Product code	Accessories to	Weight [kg]	Packing [pcs]
		end	middle						
1	12	65	110	1000	G-1L-1000/12	00171	LSN, LSE, ASN	0.22	50
					G-1L-1000/12g ${ }^{1)}$	00170	LSN, LSE, ASN	0.1	50
	16	80	130	210	S-1L-210/16iso	13012	LSN, LSE, SVL, SJL, ASN	0.045	50
	20	90	150	1000	G-1L-1000/20	00172	LSN, LSE, SJB, SVM, ASN	0.36	50
	24	100	180	1000	G-1L-27-1000/24 ${ }^{\text {2) }}$	11001	LSN, LSE, ASN	0.3	50
2	16	80	130	1000	G-2L-1000/16	11179	LSN, LSE, LFI, LFE, OFI, OFE, ASN	0.46	20
3	10	63	100	1000	G-3L-1000/10C	00173	LSN, LSE, ASN	0.44	20
	16	80	130	1000	G-3L-1000/16C	00174	LSN, LSE, OFI, OFE, SJB, SVM, ASN	0.72	20
					G-3L+9-1000/16 ${ }^{\text {2) }}$	11002	LSN, LSE, ASN	0.66	10
					S-3L-27-1000/16 ${ }^{\text {3) }}$	11864	LSN, LST, LSE, ASN, AST	0.52	20
	25	100	180	1000	S-3L-27-1000/25 ${ }^{3)}$	11865	LSN, LST, LSE, ASN, AST	0.96	10
4	16	80	130	1000	G-4L-1000/16	11180	LSN, LSE, OFI, OFE, ASN	0.96	15

${ }^{11}$ The busbar is uninsulated
${ }^{2)}$ For 1-pole or 3-pole devices with an auxiliary switch
${ }^{3)}$ For 3-pole LST; for 1-pole LSN, LSE, ASN with an auxiliary switch

End caps

| Type | Product
 code | Accessories to | Weight
 $[\mathrm{kg}]$ | Packing
 $[\mathrm{pcs}]$ |
| :--- | :---: | :--- | :---: | :---: | :---: |
| EK-C-3 | 00178 | G-3L-100/10C | 0.001 | 10 |
| EK-C-2+3 | 00181 | G-2L-1000/16, G-3L-1000/16C, S-3L-27-1000/16 | 0.001 | 10 |
| EK-C-3/36 | 11176 | S-3L-1000/25 | 0.002 | 10 |
| EK-C-4/16 | 11181 | G-4L-1000/16 | 0.002 | 10 |

Specification

Type	G-1L, G-2L, G-3L, G-4L, S-1L, S-3L	
Rated operating voltage	U_{e}	$230 / 400 \mathrm{~V}$ a.c., 220/440 V d.c.
Load current	$63 \div 180 \mathrm{~A}$	
Length	$210,1000 \mathrm{~mm}$	
Cross-section	$10 \div 25 \mathrm{~mm}^{2}$	

Diagram

G-1L, S-1L
G-3L, S-3L

L1 L2 L3 N

End cap EK-C-2+3:

- To cover end of busbar G-2L-1000/16, G-3L-1000/16C, S-3L-27-1000/16

End cap EK-C-3/36:

■ To cover end of busbar S-3L-27-1000/25

End cap EK-C-4/16:

To cover end of busbar G-4L-1000/16

INTERCONNECTING BUSBARS AND END CAPS

Dimensions

G-1L-1000/12

G-1L-1000/12g

G-1L-1000/20

G-2L-1000/16

G-3L-1000/10C

G-3L-1000/16C

G-3L+9-1000/16C

S-3L-27-1000/25

CONNECTING ADAPTERS AND BLOCKS

BASIC TERMS AND SYMBOLS

- Rated residual current $\mathrm{I}_{\Delta \mathrm{n}}$ is the value of residual current I_{Δ} specified by the manufacturer at which the residual current circuit breaker must switch out under specified conditions. Alternating residual current must release the residual current circuit breaker within $(0.5 \div 1) I_{\Delta n}$
- Rated current I_{n} is the value of current specified by the manufacturer, which can be transferred by the residual current circuit breaker continuously. So the current I_{n} can pass through the contacts for an unlimited time. Therefore it is, for instance, possible to use a residual current circuit breaker with $I_{n}=25 \mathrm{~A}$ in 16 A circuit. For protection against overload of the residual current circuit breakers OFI, OFE, it is recommended to use the miniature circuit breakers LSN, LST, LSE with rated current $I_{\text {nMB }} \leq I_{\text {n RCB }}$
- Rated operating voltage \mathbf{U}_{e} is the voltage the residual current circuit breaker is to be connected to and which properties are related to. The connected voltage has no effect on the device function but on the function of the test circuit and isolation properties.
- Rated frequency f_{n} is the frequency the residual current circuit breaker is designed for and at which it works correctly under stated conditions. Majority of residual current circuit breakers are designed for $\mathrm{f}=50$ to 60 Hz . As the residual current circuit breaker function is based on the induction principle, the residual current behaviour and frequency show an effect upon tripping. When using a device designed for $50 / 60 \mathrm{~Hz}$ in a network with a different frequency, the user must count on a change of the tripping threshold i.e. a change of $I_{\Delta n}$
- Rated conditional short-circuit current I_{nc}-short-circuit strength. The function and design principle does not allow for the residual current circuit breaker use for protection against short-circuit. For circuit protection it is necessary to use a circuit breaker or a fuse. These elements cut the short-circuited circuit safely off. The residual current circuit breaker must only withstand the through-going short-circuit current. The amplitude of the maximum through current is defined as rated conditional short-circuit current I_{nc}. The short-circuit strength is then expressed by the current $I_{n c}$. For example, on the rating plate, $I_{n c}=10 \mathrm{kA}$ is expressed by the following symbol:

$$
\square-10000
$$

- Ambient temperature \mathbf{T} for the residual current circuit breakers is $(-5 \div+40)^{\circ} \mathrm{C}$ according to almostall international standards. Some residual current circuit breakers work in an extended range $(-25 \div+40)^{\circ}$. This possibility is identified by the following symbol on the rating plate.

Residual current circuit breaker - type AC - reacts to sine-wave residual current - it is used in conventional AC networks.

- Residual current circuit breaker - type A - reacts to sine-wave alternating and pulsating direct residual currents - it is used in conventional AC networks and the networks with phase power regulation etc.

- Residual current circuit breaker - type G - special residual current circuit breaker reducing the number of undesirable releases. It is mainly installed before the devices causing short-time (up to 10 ms) stray currents. Identification: G
Surge resistance: $3 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$
Release delay: 10 ms

■ Residual current circuit breaker - type S - special residual current circuit breaker, which is mainly intended for selective switching of residual current circuit breakers and reduction of undesirable releases. It is installed before the devices causing short-time (up to 40 ms) stray currents.
Identification: S
Surge resistance: $5 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$
release delay: 40 ms

Selective (discriminating) switching means that if the residual current circuit breakers are connected in series, only the device in which circuit a failure occurs will release. More specifically, only the device in which the release residual current appears due to a failure in the protected circuit will release. The advantage consists in maintaining the power supply in the other circuits not affected by the failure.

Such function of the protected circuit is achieved by connection of the selective residual current circuit breaker (see Fig. 1) before the standard or G type residual current circuit breaker, with the following ratio of rated residual currents:

$$
I_{\Delta n s} \geq 3 x I_{\Delta n, G}
$$

$I_{\text {ans }}$ rated residual of the selective residual current circuit breaker
$\mathrm{I}_{\mathrm{\Delta n} ; \mathrm{G}}$ maximum rated residual current of G type residual current circuit breaker

The main reason of selective switching is higher time delay of the selective residual current circuit breakers in releasing (compared to standard or G type ones).

Fig. 1: Simplified example of selective connection of residual current circuit breakers.

- Residual current circuit breaker with overcurrent protection - the device is a combination of residual current circuit breaker and miniature circuit breaker with 2-module width - it saves the space in the switchboard compared to conventional connection of two separate devices (3 modules). This eliminates the problem of primary protection and interconnection. The disadvantage of such a design compared to conventional ones is that it is not possible to identify whether the release was actuated by the residual current circuit breaker or by overcurrent release of the circuit breaker.

Fig. 2: Example of interconnection of the residual current circuit breaker OFI with miniature circuit breaker LSN by busbar G-4L

