PRIORITY CURRENT RELAYS

- The relays monitor the strength of current in the circuit and close contact 1,2 at a jump exceeding of a guaranteed switched current
- They make it possible to interrupt the power supply of one (non-priority) circuit, if the current of the other (priority) circuit jumps to a set value
- They are most frequently installed in distribution systems where concurrent operation of more appliances is not possible because of risk of exceeding a permitted power input
- For example, the relays can disconnect electric heating, a
storage block heater from the networkifan instantaneous water heater is switched - therefore it is possible to select a main circuit breaker and conductors for a lower power input
- They make it possible to increase the number of appliances for existing installations
- In the circuits with electronic (e.g. thyristor) control, they cannot be used directly but with a time-delay relay - see connection examples
- Maximum current through the current coil: 63 A
- Maximum current through the contact: 16 A

Priority current relays

Contact sequence ${ }^{1}$	Operating current ${ }_{\text {I }}$ [A]	Type	Product code	Weight [kg]	Packing [pss]
10	$5 \div 15$	RP1-10/5-15	07420	0.1	10
	$10 \div 28$	RP1-10/10-28	07421	0.1	10
	$26 \div 63$	RP1-10/26-63	07422	0.1	10
01	$5 \div 15$	RP1-01/5-15	07417	0.1	10
	$10 \div 28$	RP1-01/10-28	07418	0.1	10
	$26 \div 63$	RP1-01/26-63	07419	0.1	10

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

Specification

Contact 1,2			
Sequence ${ }^{1)}$			10,01
Rated voltage/current	AC-1	$U_{n} I_{n}$	250 V a.c. / 16 A
Electrical endurance			75000 operating cycles
Frequency of switching			max. 1200 operating cycles/h
Connection - terminals 1,2			$0.75 \div 2.5 \mathrm{~mm}^{2}$
Current coil A1, A2			
Operating current range		I_{n}	$5 \div 15 \mathrm{~A}, 10 \div 28 \mathrm{~A}, 26 \div 63 \mathrm{~A}$
Guaranteed switched current for $\mathrm{I}_{\mathrm{n}}{ }^{\text {2) }}$	range $5 \div 15$		$\geq 5 \mathrm{~A}$
	range $10 \div 28$		$\geq 10 \mathrm{~A}$
	range $26 \div 63$		$\geq 26 \mathrm{~A}$
Guaranteed unswitched current for I_{n}	range $5 \div 15$		$\leq 2 \mathrm{~A}$
	range $10 \div 28$		$\leq 6 \mathrm{~A}$
	range $26 \div 63$		$\leq 16 \mathrm{~A}$
Connection - terminals A1, A2			$0.75 \div 16 \mathrm{~mm}^{2}$
Power losses			3W
Other data			
Insulation voltage			400 V
Mounting on the rail DIN EN 50022 -width			35 mm
Degree of protection			IP20
Ambient temperature			$-20 \div 50^{\circ} \mathrm{C}$
Seismic immunity ($8 \div 50 \mathrm{~Hz}$)			3 g
Operating position			arbitrary

${ }^{1)}$ Each digit indicates successively the number of make and break contacts
${ }^{2)}$ Only for jump increase in current

RP1 selection according to power output of the switched appliance

Appliance		Relay RP1
Voltage [V a.c.]	Power output [kW]	Current range $\mathrm{I}_{\mathrm{n}}[\mathrm{A}]$
230	$1.2 \div 3.4$	$5 \div 15$
	$2.3 \div 6.4$	$10 \div 28$
400	$6 \div 14.5$	$26 \div 63$
	$3.4 \div 10$	$5 \div 15$
	$6.9 \div 19.3$	$10 \div 28$

Dimensions

RP 1

Wiring diagram examples

- For example, at locking of consumption of an electric heater (a non-priority appliance) the current coil (terminals A1, A2) is connected in the circuit of an instantaneous water heater (a priority appliance) at switching the latter on, and control contact (terminals 1, 2) is connected in the circuit of the electric heater contactors. So if the instantaneous water heater is switched on and the current reaches so called "guaranteed switched current", the control break contact will interrupt the power supply of contactors, and subsequently disconnects the electric boiler.

Diagram

- At priority switching of an appliance with electronic control the relay function is troubled (the relay is synchronized with the electronic control). For this reason it is recommended to connect a time-delay relay in the control contact circuit.

