LVN



- Series of miniature circuit breakers up to 125 A, AC 230/400 V a DC 72 V / pole.
- For protection of cables and conductors against overload and short-circuit.
- Tripping characteristics B, C, D according to EN 60898-1.
- Breaking capacity 10 kA.
- Status indicator indicates on/off position.
- Possibility of locking and sealing in off or on position.

# Miniature circuit breakers 1-pole

| l <sub>n</sub> | Charact    | eristic B  | Characteristic C |            | Characteristic D |            | Number     | Weight | Package |
|----------------|------------|------------|------------------|------------|------------------|------------|------------|--------|---------|
| [A]            | Туре       | Order code | Туре             | Order code | Туре             | Order code | of modules | [kg]   | [pcs]   |
| 80             | LVN-80B-1  | 0EZ:42262  | LVN-80C-1        | 0EZ:42265  | LVN-80D-1        | 0EZ:42268  | 1.5        | 0.283  | 1       |
| 100            | LVN-100B-1 | 0EZ:42263  | LVN-100C-1       | 0EZ:42266  | LVN-100D-1       | 0EZ:42269  | 1.5        | 0.281  | 1       |
| 125            | LVN-125B-1 | 0EZ:42264  | LVN-125C-1       | 0EZ:42267  | -                | -          | 1.5        | 0.260  | 1       |

# Miniature circuit breakers 3-pole

| l <sub>n</sub> | Characteristic B Characteristic C |            | Characteristic D |            | Number     | Weight     | Package    |       |       |
|----------------|-----------------------------------|------------|------------------|------------|------------|------------|------------|-------|-------|
| [A]            | Туре                              | Order code | Туре             | Order code | Туре       | Order code | of modules | [kg]  | [pcs] |
| 80             | LVN-80B-3                         | 0EZ:42273  | LVN-80C-3        | 0EZ:42276  | LVN-80D-3  | 0EZ:42279  | 4.5        | 0.817 | 1     |
| 100            | LVN-100B-3                        | 0EZ:42274  | LVN-100C-3       | 0EZ:42277  | LVN-100D-3 | 0EZ:42280  | 4.5        | 0.821 | 1     |
| 125            | LVN-125B-3                        | 0EZ:42275  | LVN-125C-3       | 0EZ:42278  | -          | -          | 4.5        | 0.827 | 1     |

### Miniature circuit breakers 4-pole

| I <sub>n</sub> | Charact    | eristic B  | Characteristic C |            | Characteristic D |            | Number     | Weight | Package |
|----------------|------------|------------|------------------|------------|------------------|------------|------------|--------|---------|
| [A]            | Туре       | Order code | Туре             | Order code | Туре             | Order code | of modules | [kg]   | [pcs]   |
| 80             | LVN-80B-4  | 0EZ:42282  | LVN-80C-4        | 0EZ:42285  | LVN-80D-4        | 0EZ:42288  | 6          | 1.092  | 1       |
| 100            | LVN-100B-4 | 0EZ:42283  | LVN-100C-4       | 0EZ:42286  | LVN-100D-4       | 0EZ:42289  | 6          | 1.075  | 1       |
| 125            | LVN-125B-4 | 0EZ:42284  | LVN-125C-4       | 0EZ:42287  | -                | -          | 6          | 1.107  | 1       |

## Accessories

| Auxiliary and signal switches | PS-LT, SS-LT           | page B36 |
|-------------------------------|------------------------|----------|
| Shunt trips                   | SV-LT                  | page B37 |
| Undervoltage releases         | SP-LT                  | page B37 |
| Locking inserts               | OD-LT-VU01             | page B38 |
| Sealing insert                | OD-LT-VP01             | page B39 |
| Interconnecting busbars       | S1L-27, S3L-27, S4L-27 | page B45 |
| Terminal extension            | AS-50-S-AL01           | page B47 |

Minia LVN Miniature circuit breakers OEZA

# MINIATURE CIRCUIT BREAKERS LVN

# **Specifications**

| Туре                                                        |                  | LVN                                     |
|-------------------------------------------------------------|------------------|-----------------------------------------|
| Standards                                                   |                  | EN 60898-1                              |
| Approval marks                                              |                  | ® C € EH[                               |
| Number of poles                                             |                  | 1, 3, 4                                 |
| Tripping characteristics                                    |                  | B, C, D                                 |
| Rated current                                               | I <sub>n</sub>   | 80 ÷ 125 A                              |
| Rated operating voltage                                     | U <sub>e</sub>   | AC 230/400 V                            |
| Max. operating voltage                                      | $U_{max}$        | AC 250/440 V, DC 72 V / protected pole  |
| Min. operating voltage (1 pole)                             | U <sub>min</sub> | AC/DC 24 V                              |
| Rated insulation voltage                                    | $U_{i}$          | AC 250/440 V                            |
| Rated frequency                                             | f <sub>n</sub>   | 50/60 Hz                                |
| Rated short-circuit breaking capacity (EN 60898-1)          | l <sub>m</sub>   | AC 10 kA                                |
| Rated short-circuit breaking capacity (EN 60898-2)          | I <sub>m</sub>   | DC 10 kA                                |
| Rated short-circuit ultimate breaking capacity (EN 60947-2) | I <sub>cu</sub>  | AC 10 kA                                |
| Rated short-circuit ultimate breaking capacity (EN 60947-2) | l <sub>a</sub>   | DC 15 kA                                |
| Mechanical endurance                                        |                  | 10 000 operating cycles                 |
| Electrical endurance                                        |                  | 10 000 operating cycles                 |
| Mounting on "U" rail according to EN 60715 - Type           |                  | TH 35                                   |
| Degree of protection - with connected conductors            |                  | IP20                                    |
| Connection                                                  |                  |                                         |
| Conductor Cu - rigid (solid, stranded)                      |                  | 4 ÷ 50 mm <sup>2</sup>                  |
| Conductor Cu - flexible with a sleeve                       |                  | $1.5 \div 35 \text{ mm}^2$              |
| Screw head type                                             |                  | PZ2                                     |
| Torque                                                      |                  | max. 3.5 Nm                             |
| Top or bottom connection                                    |                  | top/bottom                              |
| Operating conditions                                        |                  |                                         |
| Ambient temperature                                         | $^{\circ}$       | -25 ÷ +55 °C, max. 95 % air humidity    |
| Working position                                            |                  | arbitrary                               |
| Climatic resistance (EN 60068-2-30)                         |                  | 6 operating cycles                      |
| Shocks (EN 60068-2-27)                                      | m/s²             | 150 in 11 ms half-sine pulse            |
| Resistance to sinusoidal vibration (EN 60068-2-6)           | m/s <sup>2</sup> | 50 at 25 ÷ 150 Hz and 60 at 35 Hz (4 s) |



#### Internal impedance Z, powers losses P, impedance of fault loop Z<sub>c</sub>

LVN

|                | Characteristic B |                 | Charact         | eristic C       | Characteristic D |                 | Max. impedance of fault loop $Z_s[\Omega]^{2)}$ |           |           |           |           |           |
|----------------|------------------|-----------------|-----------------|-----------------|------------------|-----------------|-------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| l <sub>n</sub> | Z <sup>1)</sup>  | P <sup>1)</sup> | Z <sup>1)</sup> | P <sup>1)</sup> | Z <sup>1)</sup>  | P <sup>1)</sup> | Charact                                         | eristic B | Charact   | eristic C | Characte  | eristic D |
| [A]            | [mΩ/pole]        | [W/pole]        | [mΩ/pole]       | [W/pole]        | [mΩ/pole]        | [W/pole]        | t ≤ 0,4 s                                       | t≤5s      | t ≤ 0,4 s | t≤5s      | t ≤ 0,4 s | t ≤ 5 s   |
| 80             | 1.1              | 7.0             | 1.1             | 6.7             | 1.1              | 6.7             | 0.58                                            | 0.58      | 0.3       | 0.46      | 0.14      | 0.46      |
| 100            | 0.8              | 8.0             | 0.88            | 8.0             | 0.8              | 8.0             | 0.46                                            | 0.46      | 0.23      | 0.37      | 0.12      | 0.37      |
| 125            | 0.7              | 10.1            | 0.7             | 10.8            | -                | -               | 0.37                                            | 0.37      | 0.18      | 0.3       | -         | -         |

<sup>1)</sup> Average values per protected pole

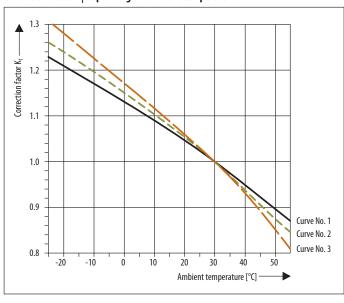
# Correction of rated current I<sub>n</sub>

Correction of circuit breaker rated current  $I_n$  is determined by relation  $I_{n1} = K_T x K_N x I_n$  where:

 $I_{n1}$  ... is corrected rated current of the circuit breaker

 $I_n$  ... is rated current of the circuit breaker (i.e. the one placed separately at reference temperature 30 °C)

 $K_{\scriptscriptstyle T}\,\ldots\,$  is correction factor taking ambient temperature into account


 $K_{\scriptscriptstyle N}\,\ldots$  is correction factor taking into account placement of more loaded circuit breakers side-by-side

#### 1) Correction factor K<sub>T</sub>

For concrete circuit breaker type ( $I_n$ , characteristic, number of poles), determine correction curve number (1, 2 or 3) in the table, and using the correction curve number and given ambient temperature on the graph, determine Correction factor  $K_T$ .

|                 |          | Rated current of the circuit breaker I <sub>n</sub> [A] |                         |     |  |  |  |  |
|-----------------|----------|---------------------------------------------------------|-------------------------|-----|--|--|--|--|
| Characteristic  | Number   | 80                                                      | 100                     | 125 |  |  |  |  |
| ClidiaCteristic | of poles |                                                         | Correction curve number | er  |  |  |  |  |
| D               | 1        | 2                                                       | 3                       | 3   |  |  |  |  |
| D               | 3,4      | 1                                                       | 1                       | 1   |  |  |  |  |
|                 | 1        | 2                                                       | 3                       | 3   |  |  |  |  |
|                 | 3,4      | 1                                                       | 1                       | 1   |  |  |  |  |
|                 | 1        | 2                                                       | 3                       | -   |  |  |  |  |
| V               | 3,4      | 1                                                       | 1                       | -   |  |  |  |  |

## Correction factor K<sub>T</sub> depending on ambient temperature



#### 2) Correction factor K<sub>N</sub>

Determine correction factor  $K_N$  according to the number of circuit breakers placed side-by-side

| Correction factor K <sub>N</sub> for circuit breakers placed side-by-side |      |       |       |      |  |  |  |  |
|---------------------------------------------------------------------------|------|-------|-------|------|--|--|--|--|
| Number of LVN circuit breakers side-by-side                               | 1    | 2 ÷ 3 | 4 ÷ 6 | >7   |  |  |  |  |
| Correction factor K <sub>N</sub>                                          | 1.00 | 0.90  | 0.88  | 0.85 |  |  |  |  |

## Example

Task:

How rated current I<sub>n</sub> = 100 A will change for circuit breaker LVN-100B-1 at ambient temperature 10 °C and for 4 circuit breakers placed side-by-side?

Determination of  $K_T$ : For characteristic B, number of poles 1, and  $I_n$  100 A it is possible to take correction curve No. 3 from the table. For intersection of the correction curve No. 3 and ambient temperature 10 °C it is possible to determine correction factor  $K_T = 1.12$  on the vertical scale of the graph.

Determination of  $K_N$ : For 4 circuit breakers LVN-100B-1 placed side-by-side it is possible to determine from the table correction factor  $K_N=0.88$ .

Correction  $I_n$ : new rated current  $I_{n1} = K_T x K_N x I_n = 1.12 x 0.88 x 100 A = 98.56 A$ 

<sup>2)</sup> For TN network, U<sub>n</sub> = AC 230 V, according to EN 60364-4-41; if the measured value exceeds the table value, we recommend to use residual current circuit breaker.

## OEZ-

# MINIATURE CIRCUIT BREAKERS LVN

## Correction of tripping characteristic depending on frequency

■ Reference frequency: 50 Hz.

#### Thermal release

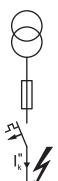
| I <sub>n</sub> | Correction factor |           |       |        |        |          |  |  |  |  |
|----------------|-------------------|-----------|-------|--------|--------|----------|--|--|--|--|
| [A]            | 0 Hz              | 16 2/3 Hz | 50 Hz | 125 Hz | 400 Hz | 1 000 Hz |  |  |  |  |
| 80 ÷ 125       | 1                 | 1         | 1     | 0.97   | 0.92   | 0.85     |  |  |  |  |

### Electromagnetic release

| I <sub>n</sub> |      |           |       |        |        |          |
|----------------|------|-----------|-------|--------|--------|----------|
| [A]            | 0 Hz | 16 2/3 Hz | 50 Hz | 125 Hz | 400 Hz | 1 000 Hz |
| 80 ÷ 125       | 15   | 1         | 1     | 1.05   | 13     | 1.8      |

#### Example:

For circuit breaker LVN-100B-1 in a circuit with frequency of 400 Hz, rated current is corrected  $I_n = 100 \times 0.92 = 92$  A. For characteristic B, range of electromagnetic release switching is changed to 1.3 x (3 ÷ 5)  $I_n = (3.9 \div 6.5) I_n$ .


# Selectivity with backup fuse

#### Selectivity of LVN miniature circuit breakers of characteristic B with backup fuses [kA]

| I <sub>n</sub> | Fuse of type gG |       |       |       |       |       |  |  |  |  |
|----------------|-----------------|-------|-------|-------|-------|-------|--|--|--|--|
| [A]            | 100 A           | 125 A | 160 A | 200 A | 224 A | 250 A |  |  |  |  |
| 80             | 2.8             | 3.8   | 5.7   | 8.1   | 10.0  | 10.0  |  |  |  |  |
| 100            | -               | 3.8   | 5.2   | 7.0   | 10.0  | 10.0  |  |  |  |  |
| 125            | -               | -     | 5.2   | 7.0   | 10.0  | 10.0  |  |  |  |  |

#### Selectivity of LVN miniature circuit breakers of characteristic C with backup fuses [kA]

| I <sub>n</sub> | Fuse of type gG |       |       |       |       |       |  |  |  |  |
|----------------|-----------------|-------|-------|-------|-------|-------|--|--|--|--|
| [A]            | 100 A           | 125 A | 160 A | 200 A | 224 A | 250 A |  |  |  |  |
| 80             | -               | -     | 5.1   | 7.5   | 9.2   | 10.0  |  |  |  |  |
| 100            | -               | -     | -     | 6.5   | 8.0   | 10.0  |  |  |  |  |
| 125            | -               | -     | -     | 6.5   | 8.0   | 10.0  |  |  |  |  |



The time selectivity of particular combination up to the value of short-circuit current  $I_{\kappa}$ " shown in the table is ensured in case of short-circuit behind the LVN circuit breaker with back-up fuse-link.

Which means that at short-circuit of particular combination under the  $l_{\kappa}^{\,\prime\prime}$  value only the circuit breaker actuates. In case the short-circuit current value is bigger than  $l_{\kappa}^{\,\prime\prime}$ , value then also the back-up fuse-link actuates.

#### Example:

Miniature circuit breaker LVN-100B-.. actuates earlier than back-up fuse-link with rated current 200 A up to short-circuit current 7 kA.

#### Selectivity of LVN miniature circuit breakers of characteristic D with backup fuses [kA]

| п | I <sub>n</sub> | Fuse of type gG |       |       |       |       |       |  |  |  |
|---|----------------|-----------------|-------|-------|-------|-------|-------|--|--|--|
|   | [A]            | 100 A           | 125 A | 160 A | 200 A | 224 A | 250 A |  |  |  |
| _ | 80             | 2.3             | 3.3   | 4.6   | 6.9   | 8.1   | 10    |  |  |  |
|   | 100            | -               | 2.8   | 4.3   | 6.2   | 7.5   | 9.2   |  |  |  |

#### Max. short-circuit current with backup fuse in kA for LVN circuit breakers

In case that short-circuit current passing through the circuit breaker is not known in the place of installation or is higher than breaking capacity of the circuit breaker, backup fuse must be used to eliminate circuit breaker overload.

|          | I <sub>n</sub> | Backup fuse of type gG  |     |      |    |  |  |  |
|----------|----------------|-------------------------|-----|------|----|--|--|--|
|          | [A]            | 160 A 200 A 224 A 250 A |     |      |    |  |  |  |
|          | 80             | 50                      | 30* | 20** | 10 |  |  |  |
| $\Theta$ | 100            | 50                      | 30* | 20** | 10 |  |  |  |
| ф        | 125            | 50                      | 30  | 20   | 10 |  |  |  |

<sup>\*</sup> characteristic D 20 kA

<sup>\*\*</sup> characteristic D 15 kA

# Switching lighting fittings with HQ, HQI and NAV lighting source in the circuit with LVN circuit breakers

HQ - mercury discharge lamps

HQI - metal halide discharge lamp

NAV - sodium discharge lamp

#### The below tables determine:

- power and current of lighting fittings with HQ, HQI and NAV lighting source
- max. permitted number of lighting devices with HQ, HQI and NAV lighting source connected downstream of the circuit breaker with this configuration, the circuit breaker does not trip in circuit (lighting fittings) switching on.

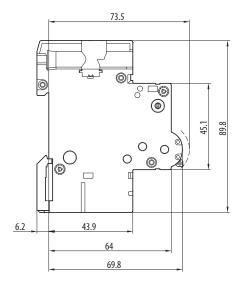
#### Power and current of lighting fittings with HQ, HQI and NAV lighting source

|                                          |     |     | Power output / lighting fitting [W] |     |     |     |       |       |       |  |
|------------------------------------------|-----|-----|-------------------------------------|-----|-----|-----|-------|-------|-------|--|
|                                          |     | 35  | 70                                  | 150 | 250 | 400 | 1 000 | 2 000 | 3 500 |  |
| Current / lighting fitting               | [A] | 0.5 | 1                                   | 1.8 | 3   | 3.5 | 9.5   | 10.3  | 18    |  |
| Current / uncompensated lighting fitting | [A] | 0.3 | 0.5                                 | 1   | 1.5 | 2   | 6     | 5.5   | 9.8   |  |
| Starting current / lighting fitting      | [A] | 10  | 18                                  | 36  | 60  | 70  | 120   | 125   | 220   |  |

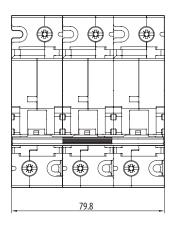
#### Max. permitted number (pieces) of lighting fittings with HQ, HQI and NAV lighting source connected downstream of the circuit breaker 1)

|                  | Rated current of the circuit breaker | Power output / lighting fitting [W] |        |       |       |       |       |       |       |
|------------------|--------------------------------------|-------------------------------------|--------|-------|-------|-------|-------|-------|-------|
|                  | I <sub>n</sub> [A]                   | 35                                  | 70     | 150   | 250   | 400   | 1 000 | 2 000 | 3 500 |
|                  | 80                                   | 76                                  | 42     | 21    | 12    | 11    | 6     | 6/5   | 3     |
| Characteristic C | 100                                  | 98                                  | 54     | 27    | 16    | 14    | 8/7   | 8/6   | 4     |
|                  | 125                                  | 116                                 | 64     | 32    | 19    | 16    | 9     | 9/8   | 5     |
| Characteristic D | 80                                   | 143/112                             | 80/56  | 40/31 | 24/18 | 20/16 | 9/6   | 10/5  | 5/3   |
| Characteristic   | 100                                  | 186/140                             | 103/70 | 51/39 | 31/23 | 26/20 | 11/7  | 12/6  | 7/4   |

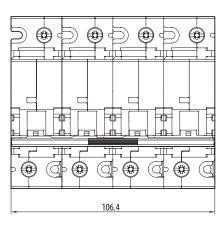

<sup>1)</sup> The values separated by slash mean the values for the lighting fittings "with compensation / without compensation".

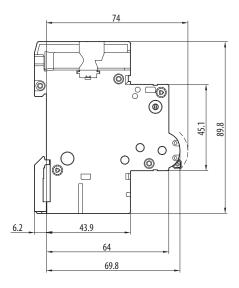

#### Example:

In case of circuit breaker LVN-100C-1, max. permitted number of lighting fittings is 98 pieces for lighting fitting with unit power of 35 W. Operating current is  $0.3 \times 98 = 29.4 \text{ A}$  for compensated lighting devices. The starting current is  $10 \times 98 = 980 \text{ A}$ .


# **Dimensions**

LVN-..-1




LVN-..-3

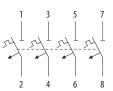


LVN-..-4

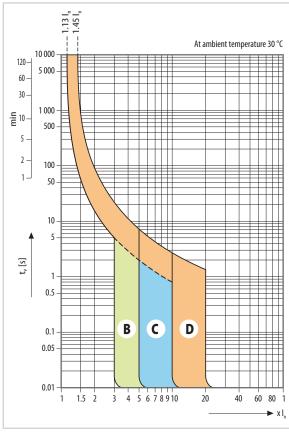




# Diagram


LVN-..-1




LVN-..-3



LVN-..-4



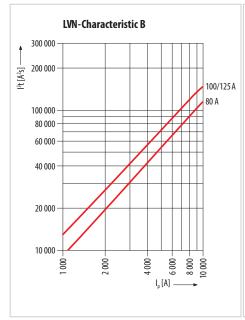
## Characteristics LVN in AC circuit 1)

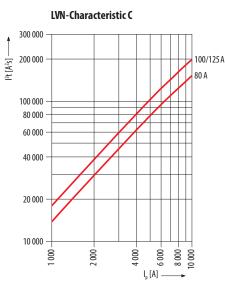


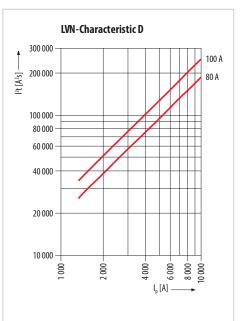
 $^{1)}$  In DC circuit, limits of electromagnetic release are changed with correction factor 1.5. Characteristic **B**:  $(4.5 \div 7.5) \, l_n / c$ :  $(7.5 \div 15) \, l_n / c$ :  $(15 \div 30) \, l_n / c$ 

- **Characteristic B**: for protection of line of electrical circuits with equipment, which does not cause current surges. The short-circuit release is set to  $(3 \div 5) I_n$ .
- **Characteristic C**: for protection of line of electrical circuits with equipment, which causes current surges. The short-circuit release is set to  $(5 \div 10) \, \text{l}_{\text{n}}$ .
- **Characteristic D**: for protection of line of electrical circuits with equipment, which causes high current surges. The short-circuit release is set to  $(10 \div 20) I_n$ .

## Tripping characteristics of circuit breakers according to EN 60898-1


| Thermal release                   | Tripping characteristic type |                             |                       |  |  |  |  |  |
|-----------------------------------|------------------------------|-----------------------------|-----------------------|--|--|--|--|--|
|                                   |                              |                             | B, C, D               |  |  |  |  |  |
| Conventional non-tripping current | $I_{nt}$ for $t \ge 2 hr$    | (for $I_n > 63 \text{ A}$ ) | $I_{nt} = 1.13 I_{n}$ |  |  |  |  |  |
| Conventional tripping current     | $I_t$ for t $<$ 2 hr         | (for $I_n > 63 \text{ A}$ ) | $I_{t} = 1.45 I_{n}$  |  |  |  |  |  |
| Current I <sub>3</sub> for        | 1 s < t < 120 s              | $(for I_n > 32 A)$          | $I_3 = 2.55 I_n$      |  |  |  |  |  |


t - break time of the circuit breaker


| Electromagnetic            | release            |                             | Tripping characteristic type |                |                |  |  |
|----------------------------|--------------------|-----------------------------|------------------------------|----------------|----------------|--|--|
|                            |                    |                             | В                            | C              | D              |  |  |
| Current I <sub>4</sub> for | 0.1 s < t < 90 s   | (for $I_n > 32 \text{ A}$ ) | $I_4 = 3 I_n$                |                |                |  |  |
|                            | 0.1  s < t < 30  s | $(for I_n > 32 A)$          |                              | $I_4 = 5 I_n$  |                |  |  |
|                            | 0.1 s < t < 8 s    | (for $I_n > 32 \text{ A}$ ) |                              |                | $I_4 = 10 I_n$ |  |  |
| Current I <sub>5</sub> for | t < 0.1 s          |                             | $I_5 = 5 I_n$                | $I_s = 10 I_n$ | $I_5 = 20 I_n$ |  |  |

t - break time of the circuit breaker

### Characteristics I2t





