MINIATURE CIRCUIT BREAKERS LSE UP TO 40 A（6 kA）

	－Circuit breakers for building，housing and similar installations up to $40 \mathrm{~A}, 230 / 400 \mathrm{~V}$ a．c．and 48 V d．c． －For cable and conductor overload and short－circuit protection －Tripping characteristics B，C according to EN 60898 －Current－limiting circuit breakers －Wide range of accessories－auxiliary and relative switches， undervoltage releases and shunt trips，busbars etc．				－Possible locking，sealing －Possible interconnection with switch－disconnectors OPV10（up to 32 A）by means of busbars －Possible interconnection with residual current circuit breakers OFE（OFI）and LFE（LFI） －All miniature circuit breakers are fitted with black operating levers		
（2）V		Characteristic		Characteristic C		Weight ［kg］	Packing ［pcs］
	［A］	Type	Product code	Type	Product code		
S	6	LSE 6B／1	12400	LSE 6C／1	12402	0.15	12
家	10	LSE 10B／1	12404	LSE 10C／1	12406	0.15	12
家	16	LSE 16B／1	12408	LSE 16C／1	12410	0.15	12
（72LSE：${ }^{\text {a }}$	20	LSE 20B／1	12412	LSE 20C／1	12414	0.15	12
810	25	LSE 25B／1	12416	LSE 25C／1	12418	0.15	12
	32	LSE 32B／1	12420	LSE 32C／1	12422	0.15	12
（1）	40	LSE 40B／1	12424	LSE 40C／1	12426	0.15	12
	Miniature circuit breakers 3－pole						
	［A］	Characteristic B		Characteristic C		Weight ［kg］	Packing$[p c s]$
		Type	Product code	Type	Product code		
\checkmark	6	LSE 6B／3	12401	LSE 6C／3	12403	0.44	4
	10	LSE 10B／3	12405	LSE 10C／3	12407	0.44	4
	16	LSE 16B／3	12409	LSE 16C／3	12411	0.44	4
害	20	LSE 20B／3	12413	LSE 20C／3	12415	0.44	4
憲	25	LSE 25B／3	12417	LSE 25C／3	12419	0.44	4
（92LSE： 1 O	32	LSE 32B／3	12421	LSE 32C／3	12423	0.44	4
	40	LSE 40B／3	12425	LSE 40C／3	12427	0.44	4

LSE accessories

Auxiliary and relative switches	S－LSN	page 19
Shunt trips	V．．．－LSN	page 21
Undervoltage releases	N．．．－LSN	page 23
Locking insert	VU－LSN	page 25
Interconnecting busbars	G－．．．，S－．．．	page 93
Connecting adapters	AS／25－GN，AS／25－SN，AS－AL／CU－16－50	page 95
Interconnecting module	PSN	page 97

Description

MINIATURE CIRCUIT BREAKERS LSE UP TO 40 A (6 kA)

Specification

Type			LSE
Standards			EN 60898
Approval marks			
Number of poles			1,3
Tripping characteristics			B, C
Rated current		I_{n}	$6 \div 40 \mathrm{~A}$
Rated operating voltage		$U_{\text {e }}$	$230 / 400 \mathrm{~V}$ a.c. / $48 \mathrm{~V} \mathrm{d.c}$.
Max. operating voltage		$\mathrm{U}_{\text {max }}$	253/440 V a.c. / 52 V d.c.
Min. operating voltage		$\mathrm{U}_{\text {min }}$	12 V a.c./d.c.
Rated frequency		f_{n}	$40 \div 60 \mathrm{~Hz}$
Rated short-circuit breaking capacity (EN 60 898)		I_{cn}	6 kA
Endurance			10000 operating cycles
Class of discrimination			3
Rated impulse withstand voltage ($1.2 / 50 \mu \mathrm{~s}$)		$\mathrm{U}_{\text {imp }}$	6 kV
Overvoltage category (IEC 664-1)			IV
Mounting on the rail DIN EN 50022 - width			35 mm
Degree of protection			IP20
Connection	Cu conductor - rigid (solid, stranded)		$0.5 \div 25 \mathrm{~mm}^{2}, 2 x(0.5 \div 10) \mathrm{mm}^{2}$
	Cu conductor - flexible		$0.5 \div 16 \mathrm{~mm}^{2}$
	rail - thickness		2 mm
	tightening torque		2 Nm
	opposite		yes
Operating conditions	ambient temperature		$-20 \div+55^{\circ} \mathrm{C}$
	operating position		arbitrary
	seismic immunity ($8 \div 50 \mathrm{~Hz}$)		5 g

Internal impedance \mathbf{Z}, power losses \mathbf{P}, impedance \mathbf{Z}_{s}

$\begin{aligned} & I_{\mathrm{n}} \\ & {[\mathrm{~A}]} \end{aligned}$	$\begin{aligned} & Z^{1)} \\ & {[\mathrm{m} \Omega / \mathrm{pól}]} \end{aligned}$	P ${ }^{1)}$ [VA/pól]	Max. impedance of fault loop $Z_{5}[\Omega]^{2)}$	
			Characteristic B	Characteristic C
6	27	1.0	7.7	4.3
10	12	1.2	4.6	2.6
16	7.8	2.0	2.9	1.6
20	5.3	2.1	2.3	1.3
25	4.2	2.6	1.8	1.0
32	2.7	2.75	1.4	0.8
40	1.8	2.9	1.2	0.6

[^0]Correction of rated currents of miniature circuit breakers LSE

$\left[\begin{array}{ll} n \\ \hline \end{array}\right.$	Correction of rated currents for ambient temperature $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}[\mathrm{A}]^{11}$								
	$-20^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
6	7.5	7.2	6.9	6.6	6.3	6	5.6	5.3	5.0
10	12.5	12.0	11.5	11.0	10.5	10	9.3	8.8	8.4
16	20.0	19.2	18.4	17.6	16.8	16	14.9	14.1	13.4
20	25.0	24.0	23.0	22.0	21.0	20	18.6	17.6	16.8
25	31.3	30.0	28.8	27.5	26.3	25	23.3	22.0	21.0
32	40.0	38.4	36.8	35.2	33.6	32	29.8	28.2	26.9
40	50.0	48.0	46.0	44.0	42.0	40	37.2	35.2	33.6

Correction of rated currents of miniature circuit breakers installed side by side $[\mathrm{A}]^{2)}$							
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{6}$	5.7	5.5	5.3	5.2	5.1	5.1	5.1
$\mathbf{1 0}$	9.5	9.2	8.9	8.7	8.5	8.5	8.5
$\mathbf{1 6}$	15.2	14.7	14.2	13.9	13.6	13.6	13.6
$\mathbf{2 0}$	19.0	18.3	17.8	17.3	17.1	17.0	17.0
$\mathbf{2 5}$	23.8	22.9	22.3	21.7	21.3	21.3	21.3
$\mathbf{3 2}$	30.4	29.3	28.5	27.7	27.3	27.2	27.2
$\mathbf{4 0}$	38.0	36.6	35.6	34.7	34.1	34.0	34.0

[^1]
MINIATURE CIRCUIT BREAKERS LSE UP TO 40 A (6 kA)

Selectivity of miniature circuit breakers LSE of characteristic B with backup fuses [kA]

LSE	PN, PNB, PV gG							
I_{n} [A]	20	25	32	40	50	63	80	100
6		1	1.5	2	6	6	6	6
10		1	1.5	2	5	6	6	6
16			1.5	2	2.5	6	6	6
20				2	2.5	5	6	6
25					2.5	5	6	6
32						3.5	6	6
40						1	5	6

Selectivity of miniature circuit breakers LSE of characteristic C with backup fuses [kA]

LSE	PN, PNB, PV gG							
$\mathrm{I}_{\mathrm{n}}[\mathrm{A}]$	20	25	32	40	50	63	80	100
$\mathbf{6}$		1	1.5	2	6	6	6	6
$\mathbf{1 0}$		1	1.5	2	5	6	6	6
$\mathbf{1 6}$			1.5	2	2.5	6	6	6
$\mathbf{2 0}$					2.5	5	6	6
$\mathbf{2 5}$					2.5	5	6	6
$\mathbf{3 2}$						3.5	6	6
$\mathbf{4 0}$							5	6

In case of short-circuit after the miniature circuit breaker LSN with backup fuse, selectivity of particular combination is guaranteed up to the value of the short-circuit current I_{k} " stated in the tables

$I_{k}{ }^{\prime \prime}$ - initial peak short-circuit current (rms value)

Dimensions

LSE.../1
LSE.../3

Diagram

LSE.../1	LSE.../3		
1	1	3	5
2		2	2

MINIATURE CIRCUIT BREAKERS LSE UP TO 40 A (6 kA)

Tripping characteristics

- Characteristic B: for protection of electric circuits with equipment that does not cause current surges (lighting or socket outlet circuits etc.); the short-circuit release is set to $(3 \div 5) I_{n}$

■ Characteristic C: for protection of electric circuits with equipment that causes current surges (light bulb groups, motors etc.); the short-circuit release is set to $(6 \div 9) I_{n}$

Tripping characteristics of miniature circuit breakers according to EN 60898

Thermal release	Tripping characteristic type
B, C	
Conventional non-tripping current I_{nt} for $\mathrm{t} \geq 1 \mathrm{~h}$	$\mathrm{I}_{\mathrm{nt}}=1.13 \mathrm{I}_{\mathrm{n}}$
Conventional tripping current $\quad \mathrm{I}_{\mathrm{f}}$ for $\mathrm{t}<1 \mathrm{~h}$	$\mathrm{I}_{\mathrm{t}}=1.45 \mathrm{I}_{\mathrm{n}}$
Current I_{3} for $1 \mathrm{~s}<\mathrm{t}<60 \mathrm{~s} \quad\left(\right.$ for $\left.\mathrm{I}_{\mathrm{n}} \leq 32 \mathrm{~A}\right)$	$\mathrm{I}_{3}=2.55 \mathrm{I}_{\mathrm{n}}$
$1 \mathrm{~s}<\mathrm{t}<120 \mathrm{~s}\left(\right.$ for $\left.\mathrm{I}_{\mathrm{n}}>32 \mathrm{~A}\right)$	

Electromagnetic release	Tripping characteristic type	
Current I_{4} for $0.1 \mathrm{~s}<\mathrm{t}<45 \mathrm{~s}\left(\begin{array}{l}\left.\text { for } \mathrm{I}_{\mathrm{n}} \leq 32 \mathrm{~A}\right) \\ 0.1 \mathrm{~s}<\mathrm{t}<90 \mathrm{~s} \\ \left(\text { for } \mathrm{I}_{\mathrm{n}}>32 \mathrm{~A}\right)\end{array}\right.$	$\mathrm{I}_{4}=3 \mathrm{I}_{\mathrm{n}}$	C
$0.1 \mathrm{~s}<\mathrm{t}<15 \mathrm{~s}\left(\begin{array}{l}\left.\text { (for } \mathrm{I}_{\mathrm{n}} \leq 32 \mathrm{~A}\right) \\ 0.1 \mathrm{~s}<\mathrm{t}<30 \mathrm{~s} \\ \left(\text { for } \mathrm{I}_{\mathrm{n}}>32 \mathrm{~A}\right)\end{array}\right.$		$\mathrm{I}_{4}=5 \mathrm{I}_{\mathrm{n}}$
Current I_{5} for $\mathrm{t}<0.1 \mathrm{~s}$	$\mathrm{I}_{5}=5 \mathrm{I}_{\mathrm{n}}$	$\mathrm{I}_{5}=10 \mathrm{I}_{\mathrm{n}}$
t - break time of the circuit breaker		

AUXILIARY AND RELATIVE SWITCHES

Auxiliary switches S-LSN11, S-LSN21

- Accessories to: LSN, LSE, LST, ASN, AST
- The auxiliary switches are designed for signalling the position of the main contacts of miniature circuit breakers and tumbler power switches in tripping by releases or manually - i.e. in tripping by overload, short-circuit, shunt trip, overvoltage release or control lever
- At correct connection of S-LSN11 or S-LSN21 with a miniature circuit breaker or tumbler power switch electric isolation is provided like between the input and output circuits of a protective transformer
- The auxiliary switch function can be tested by the test push-button on the front panel of the device

Auxiliary and relative switch S-LSN2001

- Accessories to: LSN, LSE, ASN
- The auxiliary and relative switch is designed for signalling the position of the main contacts of miniature circuit breakers and tumbler power switches in tripping:
- by releases or manually - i.e. in tripping by overload, short-circuit, shunt trip, overvoltage release or control lever. This is signalled by auxiliary switches - terminals $33-34,23-24$
- only by releases - i.e. only in tripping by overload, short-circuit, shunt trip or overvoltage release. This is signalled by so called relative switch - terminals 95-96

The auxiliary switch function can be tested by the test push-button on the front panel of the device

Auxiliary and relative switches

Contact sequence ${ }^{1)}$	Type	Product code	Weight $[\mathrm{kg}]$	Packing $[\mathrm{pcs}]$
11	S-LSN11	01494	0.05	1
21	S-LSN21	01495	0.05	1
2001	S-LSN2001	01498	0.05	1

${ }^{1)}$ Each digit indicates successively the number of make, break, break-make and relative contacts

Specification

Type			S-LSN11, S-LSN21	S-LSN2001
Standards			EN 60 947-5-1	EN 60 947-5-1
Approval marks				
Contact sequence ${ }^{1 / 2)}$			11,21	2001
Rated operating voltage / current	AC-1	U_{e} / I_{e}	$230 \mathrm{~V} / 6 \mathrm{~A}$	$230 \mathrm{~V} / 6 \mathrm{~A}$
	AC-15	Ue $I_{\text {e }}$	$230 \mathrm{~V} / 4 \mathrm{~A}$ or $400 \mathrm{~V} / 2 \mathrm{~A}$	-
	DC-1	U_{e} / I_{e}	-	$220 \mathrm{~V} / 1 \mathrm{~A}$
	DC-13	U_{e} / I_{e}	$220 \mathrm{~V} / 1 \mathrm{~A}$	-
Rated impulse withstand voltage		$\mathrm{U}_{\mathrm{imp}}$	4 kV	2.5 kV
Endurance			10000 operating cycles	10000 operating cycles
Degree of protection			IP20	IP20
Mounting			on right side	on right side
Connection-conductor	rigid		$0.75 \div 4 \mathrm{~mm}^{2}$	$0.75 \div 4 \mathrm{~mm}^{2}$
	flexible		$0.75 \div 2.5 \mathrm{~mm}^{2}$	$0.75 \div 2.5 \mathrm{~mm}^{2}$
Seismic immunity ($8 \div 50 \mathrm{~Hz}$)			3 g	3 g

${ }^{1)}$ Each digit indicates successively the number of make, break, break-make and relative contacts
${ }^{2)}$ Another possibility to achieve a higher number or a different sequence of contacts: install V101-LSN. . . shunt trip on the left side of the device and use only the auxiliary switch function

Dimensions

s-ISN

AUXILIARY AND RELATIVE SWITCHES

Diagram

S-LSN11

S-LSN21

S-LSN2001

Assembly and installation of auxiliary switches

Assembly

LT ATT

USN
USE

S-LSN...

AS

Installation of an auxiliary switch on a miniature circuit breaker or tumbler power switch (hereinafter only the device):

1. Switch on both the auxiliary switch and the device.
2. Insert one shaft into the control lever of the device and the second shaft (for LST, AST the shaft is plastic) into the hole in the switching system of the device.
3. Slide the auxiliary switch from the right onto the device in such a way that one shaft interconnects control levers and the other interconnects the switching systems.
4. Press the auxiliary switch to the device and click the side fixing latches of the auxiliary switch into the device recess.
5. Check correct function by switching.
metallic shaft-LSN, LSE, ASN, LST, AST

USN, USE, ASK
ST, ACT

SHUNT TRIPS

- Accessories to: LSN, LST, LSE, ASN, AST
- For tripping the miniature circuit breakers or tumbler power switch by applied voltage between 70% and $110 \% U_{e}$
- For signalling the position of the main contacts of the miniature circuit breaker or tumbler power switch by make or break-make contact
- The shunt trip coil is connected to terminals A1 and A2 to ensure its disconnection from the control voltage in the device trip. So the coil is powered for a required time. The disconnection is provided by the contact in the circuit between the terminals A1 and A2.
■ Shunt trips V101-LSN contains additionally an auxiliary switch with break-make contact

Shunt trips

U_{n} $A^{n} / D C[V]$	Contact sequence - 10		Contact sequence-101 ${ }^{1)}$		$\begin{gathered} \text { Weight } \\ {[\mathrm{kg}]} \\ \hline \end{gathered}$	Packing$[p, s]$
	Type	Product code	Type	Product code		
24/24	V10-LSN-X024	08487	V101-LSN-X024	08497	0.12	1
48/48	V10-LSN-X048	08488	V101-LSN-X048	08755	0.12	1
110/110	V10-LSN-X110	08489	V101-LSN-X110	08926	0.12	1
$230 / 220$	V10-LSN-X230	08490	V101-LSN-X230	08498	0.12	1
400 / 440	V10-LSN-X400	08491	V101-LSN-X400	08499	0.12	1

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Specification

Type			V...-LSN
Standards			EN 60 947-1
Coil			
Rated operating voltage		$U_{\text {e }}$	24, $48,110,230,400 \mathrm{~V}$ a.c.
			$24,48,110,220,440 \mathrm{~V}$ d.c.
Rated frequency		f_{n}	$40 \div 60 \mathrm{~Hz}$
Max. starting input power			90 VA
Break time			10 ms
Contact			
Sequence ${ }^{1)}$			10, 101
Rated operating voltage / current	AC-1	U_{e} / I_{e}	$230 \mathrm{~V} / 4 \mathrm{~A}$ or $400 \mathrm{~V} / 2 \mathrm{~A}$
	DC-1	Ue ${ }_{\text {e }} \mathrm{I}_{\text {e }}$	$220 \mathrm{~V} / 0.5 \mathrm{~A}$
	AC-15	Ue ${ }_{\text {e }} \mathrm{I}_{\text {e }}$	$230 \mathrm{~V} / 2 \mathrm{~A}$
Endurance			10000 operating cycles
Other data			
Mounting			on the left side
Connection - conductor rigid and flexible			$0.75 \div 2.5 \mathrm{~mm}^{2}$
Degree of protection			IP20
Seismic immunity ($8 \div 50 \mathrm{~Hz}$)			1.5 g

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Dimensions

V...-LSN

SHUNT TRIPS

Diagram

V10-LSN

14

V101-LSN

$14 \quad 21$

Assembly and installation of shunt trips

Assembly

V...-LSN

LSN

AST
LSE
AST
ASN

Installation of a shunt trip on a miniature circuit breaker or tumbler power switch (hereinafter only the device):

1. Switch off both the shunt trip and the device.
2. Insert one shaft into the control lever of the shunt trip and the second shaft (for LST, AST the shaft is plastic) into the hole in the switching system of the shunt trip.
3. Slide the device from the right onto the shunt trip in such a way that one shaft interconnects control levers and the other interconnects the switching systems.
4. Press the device to the shunt trip and click the side fixing latches of the shunt trip into the device recess.
5. Check correct function by switching

UNDERVOLTAGE RELEASES

	- Accessories to: LSN, LST, LSE, ASN, AST - For tripping the miniature circuit breaker or tumbler power switch at voltage drop between 70% and $35 \% \mathrm{U}_{\text {e }}$ - For tripping the miniature circuit breaker or tumbler power switch on pressing the switch-off push-button - For elimination of miniaturecircuit breakers or tumbler power switch closing at voltage lower than 35% on the undervoltage release (the closing is possible at $\mathrm{U} \geq 85 \% \mathrm{U}_{\mathrm{e}}$) Undervoltage releases			It is frequently used for protection against motor restart after the mains failure Undervoltage releases N101-LSN contain in addition an auxiliary switch with make and break-make contact for signalling the position of main contacts of the miniature circuit breaker or tumbler power switch			
	$\begin{gathered} U_{n} \\ A C[V] \\ \hline \end{gathered}$	Without contacts		Contact sequence - $101{ }^{11}$		Weight [kg]	Packing [pcs]
		Type	Product code	Type	Product code		
	24	N-LSN-A024	08475	N101-LSN-A024	08485	0.12	1
	48	N-LSN-A048	08476	N101-LSN-A048	09053	0.12	1
	110	N-LSN-A110	08477	N101-LSN-A110	09055	0.12	1
	230	N-LSN-A230	08478	N101-LSN-A230	08486	0.12	1
	400	N-LSN-A400	08479	N101-LSN-A400	08927	0.12	1
	Specification						
	Type			N...-LSN			
	Standards			EN 60 947-1			
	Coil						
	Rated operating voltage			$U_{\text {e }}$	24, $48,110,230,400 \mathrm{~V}$ a.c.		
	Rated frequency			f_{n}	$40 \div 60 \mathrm{~Hz}$		
	Consumption				2.5 W		
	Max. starting input power				90 VA		
	Break time				25 ms		
	Contact						
	Sequence ${ }^{1)}$				0,101		
	Rated op	ge/current	AC-1	U_{e} / I_{e}	$230 \mathrm{~V} / 4 \mathrm{~A}$ or $400 \mathrm{~V} / 2 \mathrm{~A}$		
			DC-1	$U_{e} I_{\text {e }}$	$220 \mathrm{~V} / 0.5 \mathrm{~A}$		
			AC-15	Ue ${ }_{\text {e }} \mathrm{I}_{\text {e }}$	$230 \mathrm{~V} / 2 \mathrm{~A}$		
	Endurance				10000 operating cycles		
	Other data						
	Mounting				on the left side		
	Connection				$0.75 \div 2.5 \mathrm{~mm}^{2}$		
	Degree of protection				IP20		
	Operating position				vertical		
	Seismic immunity ($8 \div 50 \mathrm{~Hz}$)			3 g			

${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts

Dimensions

N...-LSN

UNDERVOLTAGE RELEASES

Diagram

N-LSN

A2

N101-LSN

Assembly and installation of undervoltage releases

Assembly

Installation of an undervoltage release on a miniature circuit breaker or tumbler power switch (hereinafter only the device):

1. Switch off both the undervoltage release and the device.
2. Insert one shaft into the control lever of the undervoltage release and the second shaft (for LST, AST the shaft is plastic) into the hole in the switching system of the undervoltage release.
3. Slide the device from the right onto the undervoltage release in such a way that one shaft interconnects control levers and the other interconnects the switching systems.
4. Press the device to the undervoltage release and click the side fixing latches of the undervoltage release into the device recess.
5. Check correct function by switching

LOCKING INSERT, LABELS

Dimensions

vu-LsN

Interconnecting systems

INTERCONNECTING BUSBARS AND END CAPS

Interconnecting busbars

- For interconnection of 1 to 4 -pole circuit breakers, tumbler power switches, residual current circuit breakers, lightning current arresters and surge voltage arresters
- For interconnection of a series of single-phase or three-phase circuit breakers and tumbler power switches, on which an auxiliary switch is mounted
- Busbars $\mathrm{G}-\ldots$ with forks into the head part of the device Busbars S-... with pins into the clip part of the device

End cap EK-C-3:

■ To cover end of busbar G-3L-1000/10C

Interconnecting busbars

Phase	Cross - section [mm^{2}]	Max. current at power supply of [A/phase]		$\begin{aligned} & \text { Length } \\ & {[\mathrm{mm}]} \end{aligned}$	Type	Product code	Accessories to	Weight [kg]	Packing [pcs]
		end	middle						
1	12	65	110	1000	G-1L-1000/12	00171	LSN, LSE, ASN	0.22	50
					G-1L-1000/12g ${ }^{1)}$	00170	LSN, LSE, ASN	0.1	50
	16	80	130	210	S-1L-210/16iso	13012	LSN, LSE, SVL, SJL, ASN	0.045	50
	20	90	150	1000	G-1L-1000/20	00172	LSN, LSE, SJB, SVM, ASN	0.36	50
	24	100	180	1000	G-1L-27-1000/24 ${ }^{\text {2) }}$	11001	LSN, LSE, ASN	0.3	50
2	16	80	130	1000	G-2L-1000/16	11179	LSN, LSE, LFI, LFE, OFI, OFE, ASN	0.46	20
3	10	63	100	1000	G-3L-1000/10C	00173	LSN, LSE, ASN	0.44	20
	16	80	130	1000	G-3L-1000/16C	00174	LSN, LSE, OFI, OFE, SJB, SVM, ASN	0.72	20
					G-3L+9-1000/16 ${ }^{\text {2) }}$	11002	LSN, LSE, ASN	0.66	10
					S-3L-27-1000/16 ${ }^{\text {3) }}$	11864	LSN, LST, LSE, ASN, AST	0.52	20
	25	100	180	1000	S-3L-27-1000/25 ${ }^{3)}$	11865	LSN, LST, LSE, ASN, AST	0.96	10
4	16	80	130	1000	G-4L-1000/16	11180	LSN, LSE, OFI, OFE, ASN	0.96	15

${ }^{11}$ The busbar is uninsulated
${ }^{2)}$ For 1-pole or 3-pole devices with an auxiliary switch
${ }^{3)}$ For 3-pole LST; for 1-pole LSN, LSE, ASN with an auxiliary switch

End caps

| Type | Product
 code | Accessories to | Weight
 $[\mathrm{kg}]$ | Packing
 $[\mathrm{pcs}]$ |
| :--- | :---: | :--- | :---: | :---: | :---: |
| EK-C-3 | 00178 | G-3L-100/10C | 0.001 | 10 |
| EK-C-2+3 | 00181 | G-2L-1000/16, G-3L-1000/16C, S-3L-27-1000/16 | 0.001 | 10 |
| EK-C-3/36 | 11176 | S-3L-1000/25 | 0.002 | 10 |
| EK-C-4/16 | 11181 | G-4L-1000/16 | 0.002 | 10 |

Specification

Type	G-1L, G-2L, G-3L, G-4L, S-1L, S-3L	
Rated operating voltage	U_{e}	$230 / 400 \mathrm{~V}$ a.c., 220/440 V d.c.
Load current	$63 \div 180 \mathrm{~A}$	
Length	$210,1000 \mathrm{~mm}$	
Cross-section	$10 \div 25 \mathrm{~mm}^{2}$	

Diagram

G-1L, S-1L
G-3L, S-3L

L1 L2 L3 N

End cap EK-C-2+3:

- To cover end of busbar G-2L-1000/16, G-3L-1000/16C, S-3L-27-1000/16

End cap EK-C-3/36:

■ To cover end of busbar S-3L-27-1000/25

End cap EK-C-4/16:

To cover end of busbar G-4L-1000/16

INTERCONNECTING BUSBARS AND END CAPS

Dimensions

G-1L-1000/12

G-1L-1000/12g

G-1L-1000/20

G-2L-1000/16

G-3L-1000/10C

G-3L-1000/16C

G-3L+9-1000/16C

S-3L-27-1000/25

CONNECTING ADAPTERS AND BLOCKS

INTERCONNECTING MODULE

Dimensions

PSN

Diagram

PSN
0

[^0]: ${ }^{1}$ Mean values
 ${ }^{\text {2) }}$ For $T N$ network, $U=230 \mathrm{~V}$, break time up to 0.4 s; if the measured value exceeds the table value, use residual current circuit breaker

[^1]: 2) Valid for reference temperature $30^{\circ} \mathrm{C}$
