RESIDUAL CURRENT CIRCUIT BREAKERS WITH OVERCURRENT PROTECTION OLFE (6 kA)

${ }^{1)}$ For preserving the function of the test push-button

RESIDUAL CURRENT CIRCUIT BREAKERS WITH OVERCURRENT PROTECTION OLFE (6 kA)

$\begin{gathered} I_{n}^{n} \\ {[A]} \\ \hline \end{gathered}$	$\begin{gathered} Z^{11} \\ {[\mathrm{~m} \Omega / \text { pole }]} \\ \hline \end{gathered}$	$\begin{gathered} p^{1)} \\ {\left[W^{\prime}\right. \text { pole] }} \\ \hline \end{gathered}$
6	53	1.9
10	16.5	1.6
16	9.8	2.5
20	7.1	2.8
25	5.6	3.5
32	4.7	4.8
40	3.6	5.8

${ }^{1)}$ Mean values

Dimensions

OLFE

Diagram
OLFE

[A]	Correction of rated currents for ambient temperature $-5^{\circ} \mathrm{C}$ up to $+40^{\circ} \mathrm{C}[\mathrm{A}]^{2)}$					
	$-5^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
6	6.6	6.5	6.3	6.2	6.0	5.8
10	12.5	12.1	11.4	10.7	10.0	9.3
16	19.1	18.6	17.8	16.9	16.0	15.1
20	23.9	23.3	22.2	21.1	20.0	18.9
25	29.8	29.1	27.8	26.4	25.0	23.6
32	38.2	37.3	35.5	33.8	32.0	30.2
40	47.7	46.6	44.4	42.2	40.0	37.8

${ }^{2)}$ Reference temperature: $30^{\circ} \mathrm{C}$

RESIDUAL CURRENT CIRCUIT BREAKERS WITH OVERCURRENT PROTECTION OLFE (6 kA)

Characteristics

- Characteristic B: for protection of electrical circuits with equipment which does not cause current surges (lighting and socket circuits etc.).
The short-circuit release is set to $(3 \div 5) \mathrm{I}_{\mathrm{n}}$
- Characteristic C: for protection of electrical circuits with equipment which causes current surges (bulb lamp groups, motors etc.).
The short-circuit release is set to $(6 \div 9) I_{n}$

Tripping characteristics of circuit breakers according to EN 60898

Thermal release	Tripping characteristic type
	B, C
Conventional non-tripping current $I_{n t}$ for $t \geq 1 \mathrm{~h}$	$\mathrm{I}_{\mathrm{nt}}=1.13 \mathrm{I}_{\mathrm{n}}$
Conventional tripping current I_{t} for $\mathrm{t}<1 \mathrm{~h}$	$\mathrm{I}_{\mathrm{t}}=1.45 \mathrm{I}_{\mathrm{n}}$
$\begin{aligned} \text { Current } I_{3} \text { for } & 1 \mathrm{~s}<t<60 s \quad\left(\text { for } I_{n} \leq 32 \mathrm{~A}\right) \\ & 1 \mathrm{~s}<t<120 \mathrm{~s}\left(\text { for } I_{n}>32 \mathrm{~A}\right) \end{aligned}$	$\mathrm{I}_{3}=2.55 \mathrm{I}_{\mathrm{n}}$

t - break time of the circuit breaker

Electromagnetic release	Tripping characteristic type	
	B	C
Current I_{4} for $0.1 \mathrm{~s}<\mathrm{t}<45 \mathrm{~s}\left(\begin{array}{l}\left.\text { for } \mathrm{I}_{\mathrm{n}} \leq 32 \mathrm{~A}\right) \\ 0.1 \mathrm{~s}<t<90 \mathrm{~s} \\ \left(\text { for } \mathrm{I}_{\mathrm{n}}>32 \mathrm{~A}\right)\end{array}\right.$	$\mathrm{I}_{4}=3 \mathrm{I}_{\mathrm{n}}$	
$0.1 \mathrm{~s}<\mathrm{t}<15 \mathrm{~s}\left(\right.$ for $\left.\mathrm{I}_{\mathrm{n}} \leq 32 \mathrm{~A}\right)$		$\mathrm{I}_{4}=5 \mathrm{I}_{\mathrm{n}}$
$0.1 \mathrm{~s}<\mathrm{t}<30 \mathrm{~s}\left(\right.$ for $\left.\mathrm{I}_{\mathrm{n}}>32 \mathrm{~A}\right)$		$\mathrm{I}_{5}=10 \mathrm{I}_{\mathrm{n}}$
Current I_{5} for $\mathrm{t}<0.1 \mathrm{~s}$	$\mathrm{I}_{5}=5 \mathrm{I}_{\mathrm{n}}$	

t - break time of the circuit breaker

AUXILIARY SWITCHES

${ }^{1)}$ Each digit indicates successively the number of make and break contacts

Specification

Type	PS-0LF-0010	PS-0F-1100	PS-0F125-1100
Standards	EN 62019	EN 62019	EN 62019
Approval marks	EN 60947-5-1		EN 60947-5-1
	ESC	ESC	

Arrangement of contacts ${ }^{1)}$			001	11	11
Rated operating	$U_{e} / I_{\text {e }}$	AC-12	-	$230 \mathrm{Va.c}. / 6 \mathrm{~A}$	230 V a.c. $/ 5 \mathrm{~A}$
voltage / current		AC-14	$230 \mathrm{Va.c}. / 5 \mathrm{~A}$	230 V a.c. $/ 3,6 \mathrm{~A}$	-
		DC-12	$\begin{aligned} & \text { 220V d.c. } / 0,5 \mathrm{~A}, \\ & 24 \mathrm{~V} \text { d.c. } / 4 \mathrm{~A} \end{aligned}$	$220 \mathrm{Vd.c} / 1 / \mathrm{A}$	220 V d.c. / $0,5 \mathrm{~A}$
Min. voltage / current			24 Va a.c. / 10 mA	$24 \mathrm{Va} . \mathrm{c} .150 \mathrm{~mA}$	$24 \mathrm{Va.c} . / 50 \mathrm{~mA}$
Short-circuit protection			MCB 6A, char. B or (${ }^{2)}$	MCB 6A, char. B or (${ }^{2)}$	MCB 6A, char. B or (${ }^{2)}$
			fuse 6 AgG	fuse 6 AgG	fuse 6 AgG
Electrical endurance			10000 operating cycles	10000 operating cycles	10000 operating cycles
Degree of protection			IP20	IP20	IP20
Mounting			on the right side of the device	on the right side of the dev	on the right side of the device
Connection					
Conductor - rigid (solid, stranded)			$1 \div 2.5 \mathrm{~mm}^{2}, 2 \times 1.5 \mathrm{~mm}^{2}$	$0.75 \div 2.5 \mathrm{~mm}^{2}$	$0.75 \div 2.5 \mathrm{~mm}^{2}$
Conductor - flexible			$0.75 \div 2.5 \mathrm{~mm}^{2}$	$0.75 \div 2.5 \mathrm{~mm}^{2}$	$0.75 \div 2.5 \mathrm{~mm}^{2}$
Torque			0.5 Nm	0.8 Nm	0.8 Nm
Opposite			yes	yes	yes
Operating conditions					
Ambient temperature			$-25^{\circ} \mathrm{C} \div 40^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \div 45^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \div 45^{\circ} \mathrm{C}$
Working position			arbitrary	arbitrary	arbitrary

[^0]
AUXILIARY SWITCHES

Dimensions

PS-OF-1100

PS-OF125-1100

Diagram

PS-OLF-0010
$12 \quad 14$

11

PS-OF-1100

PS-OF125-1100

- Rated residual operating current $I_{\Delta n}$ is the value of residual current $I_{\Delta n}$ specified by the manufacturer, at which the residual current circuit breaker must switch out under specified conditions. Alternating residual current must by cut off by the residual current circuit breaker within $(0.5 \div 1) \mathrm{I}_{\Delta \mathrm{n}}$
- Rated current I_{n} is the value of current specified by the manufacturer, which can be transferred by the residual current circuit breaker continuously. So the current I_{n} can pass through the contacts for an unlimited time. Therefore it is, for instance, possible to use a residual current circuit breaker with $\mathrm{I}_{\mathrm{n}}=25 \mathrm{~A}$ in the circuit with max. current up to 25 A. For protection against overload of the residual current circuit breakers $0 \mathrm{FI}, \mathrm{OFE}$, it is recommended to use the circuit breakers LSN, LST, LSE with rated current $\mathrm{I}_{\mathrm{n} \text { MCB }} \leq \mathrm{I}_{\mathrm{n} \text { RCCB }}$
- Rated operating voltage U_{e} is the voltage the residual current circuit breaker is to be connected to and which properties are related to. The connected voltage has no effect on the device function but on the function of the test circuit and isolation properties.
- Rated frequency f_{n} is the frequency the residual current circuit breaker is designed for and at which it works correctly under stated conditions. Majority of residual current circuit breakers are designed for $\mathrm{f}_{\mathrm{n}}=50$ to 60 Hz . As the residual current circuit breaker function is based on the induction principle, the residual current behaviour and frequency show an effect upon tripping. When using a device designed for $50 / 60 \mathrm{~Hz}$ in a network with a different frequency, the user must count on a change of the tripping threshold i.e. a change of $I_{\Delta n}$
- Conditional short-circuit current $I_{n c}$ - short-circuit strength. The function and design principle does not allow to use the residual current circuit breaker for protection against short circuit. For circuit protection it is necessary to use a circuit breaker or a fuse. These elements cut the short-circuited circuit safely off. The residual current circuit breaker must only withstand the through-going short-circuit current. The amplitude of the maximum through current is defined as rated conditional short-circuit current $I_{n c}$. The short-circuit strength is then expressed by the current $I_{n c}$. For example, on the rating plate $\mathrm{I}_{\mathrm{nc}}=10 \mathrm{kA}$ is expressed by the following symbol:

- Ambient temperature T for the residual current circuit breakers is $(-5 \div+40)^{\circ} \mathrm{C}$ according to almost all international standards. Some residual current circuit breakers work in an extended range $(-25 \div+40)^{\circ} \mathrm{C}$. This possibility is identified by the following symbol on the rating plate:

- Residual current circuit breaker - type AC - reacts to sine-wave residual current - it is used in conventional AC networks

- Residual current circuit breaker - type A - reacts to sine-wave alternating and pulsating direct residual currents - it is used in conventional AC networks and the networks with phase power regulation etc.

- Residual current circuit breaker - type G - special residual current circuit breaker reducing the number of undesirable cut-offs. It is mainly installed before the devices causing short-time (up to 10 ms) stray currents. Identification: G
Surge resistance: $3 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$
Release delay: 10 ms

G

- Residual current circuit breaker - type S - special residual current circuit breaker, which is mainly intended for selective switching of residual current circuit breakers and reduction of undesirable cut-offs, It is installed before the devices causing short-time (up to 40 ms) stray currents.
Identification: S
Surge resistance: $5 \mathrm{kA}(8 / 20 \mu \mathrm{~s})$
Release delay: 40 ms

Selective (discriminating) switching means that if the residual current circuit breakers are connected in series, only the device in which circuit a failure occurs will cut off the current. More specifically, only the device in which the tripping residual current appears due to a failure in the protected circuit will turn off the current. The advantage consists in maintaining the power supply in the other circuits not affected by the failure.
Such function of the protected circuit is achieved by connection of the selective residual current circuit breaker (see Fig. 1) before the standard or G type residual current circuit breaker, with the following ratio of rated residual current:

$$
I_{\Delta n s} \geq 3 \times I_{\Delta n ; G}
$$

$I_{\text {ans }}$ Rated residual operating current of the selective residual current circuit breaker
$I_{\Delta n-G}$ Rated residual operating current of standard or G type residual current circuit breaker

The main reason of selective disconnecting of circuits is higher time delay of the selective residual current circuit breakers in tripping (compared to standard or G type ones).

Fig. 1: Simplifi ed example of selective connection of residual current circuit breakers

- Residual current circuit breaker with overcurrent protection - the device is a combination of residual current circuit breaker and circuit breaker with 2-module width - it saves the space in the switchboard compared to conventional connection of two separate devices (3 modules). This eliminates the problem of primary protection and interconnection. The disadvantage of such a design compared to conventional one is that it is not possible to identify whether the tripping was actuated by the residual current circuit breaker or by the circuit breaker.

INTERCONNECTING BUSBARS

Interconnecting busbars

- For interconnection of 1 to 4 -pole circuit breakers, tumbler switches, residual current circuit breakers, lightning current arresters and surge voltage arresters
- For interconnection of a series of single-phase or threephase circuit breakers and tumbler switches, on which an auxiliary switch is mounted switch

Busbar shape	Number of poles	Output spacing [mm]	Number of outlets	Cross-section [mm^{2}]		Product code	End cap	Weight [kg]	Package [pcs]
늘	1	17.8	2	10	G1L-30-10	37352	- ${ }^{1)}$	0.008	50
				16	G1L-30-16	37356	-1)	0.012	50
			6	10	G1L-106-10	37353	- 1)	0.023	50
				16	G1L-106-16	37357	- 1)	0.037	50
			12	10	G1L-210-10	37354	- 1)	0.045	50
				16	G1L-210-16	37358	- 1)	0.073	50
			57	12	G1L-1000-12	37355	EKC-1	0.227	50
				20	G1L-1000-20	37359	-	0.367	50
		$27^{2)}$	37	24	G1L-27-1000-24	37360	-	0.307	50
	2	17.8	2×28	16	G2L-1000-16	37361	EKC-2+3	0.477	20
	3	17.8	3×2	10	G3L-106-10	37362	- ${ }^{1)}$	0.046	25
				16	G3L-106-16	37366	- 1)	0.074	25
			3×3	10	G3L-160-10	37363	- 1)	0.069	25
				16	G3L-160-16	37367	- 1)	0.111	25
			3×4	10	G3L-210-10	37364	- 1)	0.091	25
				16	G3L-210-16	37368	- 1)	0.147	25
			3×19	10	G3L-1000-10C	37365	EKC-3	0.457	20
				16	G3L-1000-16C	37369	EKC-2+3	0.737	20
		$17.8+9$	3×16	16	G3L+9-1000-16	37370	EKC-2+3	0.614	20
	4	17.8	4×14	16	G4L-1000-16	37371	EKC-4	0.983	15
			2×27	16	G3L+N-1000-16	37372	EKC-4	0.983	15
-	1	17.8	12	16	S1L-210-16	37374	- 1)	0.047	50
			57	10	S1L-1000-10	37373	EKC-1	0.204	50
				16	S1L-1000-16	37375	EKC-1	0.302	50
		27	38	16	S1L-27-1000-16	37376	EKC-1	0.201	50
			37	25	S1L-27-1000-25	37377	-	0.315	30
	2	17.8	2×28	16	S2L-1000-16	37378	EKC-2+3	0.477	20
	3	17.8	3×19	16	S3L-1000-16	37379	EKC-2+3	0.737	20
		27	3×12	16	S3L-27-1000-16	37380	EKC-2+3	0.537	20
				25	S3L-27-1000-25	37381	EKC-3-36	0.995	10
	4	27	4×9	25	S4L-27-1000-25	37382	EKC-3-36	1.327	5

${ }^{1)}$ The busbar is manufactured as enclosed one
${ }^{2)}$ For single-pole devices with auxiliary switch

Accessories

End caps

- For covering the ends of connecting busbars

Type	Product code	Description	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
EKC-1	37383	for 1-pole rails cross-section 10, 12, 16 mm^{2}	0.0005	10
EKC-2+3	37384	for 2-pole rails and for 3-pole rails crosss-section $16 \mathrm{~mm}^{2}$	0.001	10
EKC-3	37385	for 3-pole rails cross-section $10 \mathrm{~mm}^{2}$	0.001	10
EKC-3-36	37386	for 3-pole rails and for 4-pole rails cross-section $25 \mathrm{~mm}^{2}$	0.002	10
EKC-4	37387	for 4-pole rails cross-section $16 \mathrm{~mm}^{2}$	0.002	10

Power supply unit

- It enables power supply of interconnecting busbars by conductors of cross section up to $35 \mathrm{~mm}^{2}$
- The blocks can be assembled in series to create a multipole connection unit.

Type	Product code	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
ES-35-GS	37388	0.035	10

INTERCONNECTING BUSBARS

Specification

Type		G.., S..
Rated operating voltage	$U_{\text {e }}$	415 V a.c.
Max. operating voltage	$U_{\text {max }}$	500 V a.c.
Loading current		$63 \div 180 \mathrm{~A}$
Cross-section		$10 \div 25 \mathrm{~mm}^{2}$
Short-circuit strength with primary fuse 250 AgG		50 kA
Overvoltage category		III
Busbar material		E-Cu-F25
Insulation material		PC/ABS-Blend

Max. loading current per phase

				Rail cross-section		
	$10 \mathrm{~mm}^{2}$	$12 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$	$20 \mathrm{~mm}^{2}$	$24 \mathrm{~mm}^{2}$	$25 \mathrm{~mm}^{2}$
Power supply from the rail edge	63 A	65 A	80 A	90 A	100 A	100 A
Power supply from the rail centre ${ }^{1)}$	100 A	110 A	130 A	150 A	170 A	180 A

${ }^{1)}$ Max. loading current in one direction must not be higher than max. loading current at power supply from the rail edge

Diagram

G1L-.., S1L-.

L1

G2L-.., S2L-..

L1 L2
(N)

G3L-.., S3L-..

L1 L2 L3

G4L-.., S4L-..

L1 L2 L3 N

G3L+N-..

L1 N L2 N L3 N

INTERCONNECTING BUSBARS

Dimensions

G1L-30-10, G1L-106-10, G1L-210-10

G1L-30-16, G1L-106-16, G1L-210-16

G-1L-27-1000/24

G3L-106-10, G3L-160-10, G3L-210-10

G3L-106-16, G3L-160-16, G3L-210-16

G3L+9-1000-16

G1L-1000-12

G1L-1000-20

G2L-1000-16

G3L-1000-10C

G-3L-1000/16C

G4L-1000-16, G3L+N-1000-16

INTERCONNECTING BUSBARS

Dimensions

S1L-210-16

S1L-1000-16

S1L-27-1000-25

S3L-1000-16

S3L-27-1000-25

ES-35-GS

S3L-27-1000-16

S4L-27-1000-25

S1L-1000-10

S1L-27-1000-16

S2L-1000-16

INTERCONNECTING BUSBARS

Examples of use of interconnecting busbars

INTERCONNECTING BUSBARS WITH FORKS

1-pole interconnecting busbars
For interconnection of 1-pole devices in the head part of the terminal
Use: LPE, LPN, SJB, SVL, SVM, APN

3-pole interconnecting busbars

For interconnection of 3-pole devices in the head part of the terminal
Use: LPE, LPN, SJB, SVL, SVM, APN

INTERCONNECTING BUSBARS WITH PINS

1-pole interconnecting busbars
For interconnection of 1-pole devices in clamp part of the terminal
Use: LPE, LPN, SJB, SVL, SVM, APN

3-pole interconnecting busbars

For interconnection of 3-pole devices in clamp part of the terminal
Use: LPE, LPN, APN

1-pole interconnecting busbars with spacing 27 mm For interconnection of 1-pole devices with auxiliary switch in the head part of the terminal
Use: LPE, LPN, APN

3-pole interconnecting busbars with a gap on the auxiliary switch
For interconnection of 3-pole devices with auxiliary switch in the head part of the terminal

Use: LPE, LPN, APN

1-pole interconnecting busbars with spacing 27 mm For interconnection of 1-pole circuit breakers LST in clamp part of the terminal or for interconnection of 1-pole devices with auxiliary switch in clamp part of the terminal Use: LPE, LPN, LST, APN, AST

3-pole interconnecting busbars with spacing 27 mm For interconnection of 3-pole circuit breakers LST in clamp part of the terminal or for interconnection of 1-pole devices with auxiliary switch in clamp part of the terminal Use: LPE, LPN, LST, APN, AST

2-pole interconnecting busbars

For interconnection of 2-pole devices in the head part of the terminal
Use: LSN, LSE, SVL, SJL, ASN

4-pole interconnecting busbars

For interconnection of 4-pole devices in the head part of the terminal
Use: LPE, LPN, OFI, OFE, APN

2-pole interconnecting busbars

For interconnection of 2-pole devices in clamp part of the terminal
Use: LPE, LPN, OLFE, OLFI, OFE, OFI, APN

4-pole interconnecting busbars with spacing 27 mm For interconnection of 4-pole circuit breakers LST in clamp part of the terminal Use: LST, AST

Connecting adapter $3 \times 10 \mathrm{~mm}^{2}$

- For connection of 3 conductors / device pole of cross section $10 \mathrm{~mm}^{2}$

Type	Product code	Accessories	Weight $[\mathrm{kg}]$	Package $[\mathrm{pcs}]$
N3 $\mathbf{x 1 0 - F H 0 0 0 ~}$	14127	LST, SJB, SVM, AST	0.035	1

CONNECTING ADAPTERS

Dimensions

N3x10-FH000

CS-FH000-...NP95

CS-FH000-3NV95

Examples of use of connecting adapters and blocks

AS-25-G

For connection of another conductor of cross section up to
$25 \mathrm{~mm}^{2}$ to the head part of the terminal
Use: LPE, LPN, OLFI, OLFE, OFI, OFE, SJB, SVM, APN

CS-FH000-3NP95, CS-FH000-1NP95, CS-FH000-3NV95
For connection of Cu/Al conductors of cross section up to
$95 \mathrm{~mm}^{2}$ to the clamp part of the terminal
Use: LST, SJBplus, SJB-NPE, AST

AS-25-S

For connection of conductors of cross section up to $25 \mathrm{~mm}^{2}$ to the clamp part of the terminal
Use: 0FI-..-2-.., OFE-..-2-.., RLP

AS-50-S-AL
For connection of Cu/Al conductors of cross section up to $50 \mathrm{~mm}^{2}$ to the clamp part of the terminal
Use: LSN, LST, LSE, LFI, LFE, SJBplus, ASN, AST

N3x10-FH000

For connection of three conductors of cross section $10 \mathrm{~mm}^{2}$ to the clamp part of one terminal
Use: LST, SJB, SVM, AST

[^0]: ${ }^{1)}$ Each digit indicates successively the number of make, break and break-make contacts
 ${ }^{2)}$ MCB - Miniature Circuit Breaker

